Learning Objective:	To be able to identify equivalent fractions	Name:	
	Date:		

Do NOW Activity:

1 Write down the first 7 prime numbers
2 Work out $112.4+15.93$
3 Work out -3+-7
4 Work out 42×76
5 Work out 1.2×0.9

PRIOR KNOWLEDGE CHECK:

1. I am able to find the HCF and LCM of two numbers

THE MAIN EVENT

WORKED EXAMPLE \#1:

equivalent fractions

1											
$\frac{1}{2}$						$\frac{1}{2}$					
$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$		
$\frac{1}{8}$	- $\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$
$\frac{1}{3}$				$\frac{1}{3}$				$\frac{1}{3}$			
$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$	
$\frac{1}{12}$	$\frac{1}{12}$	$\begin{array}{\|l\|l\|} \hline \frac{1}{12} & \frac{1}{12} \\ \hline \end{array}$		$\frac{1}{12}$							
$\frac{1}{5}$		$\frac{1}{5}$			1		$\frac{1}{5}$			$\frac{1}{5}$	
$\frac{1}{10}$	$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\overline{0} \mid \overline{1}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$

You can make equivalent fractions by multiplying or dividing the numerator and denominator by the same number.

© Jonny Eathor 2014

PRACTICE \#1:

Question 1: Find the missing numbers
(a) $\frac{2}{3}=\frac{}{6}$
(b) $\frac{1}{5}=\frac{}{20}$
(c) $\frac{3}{4}=\frac{}{12}$
(d) $\frac{5}{7}=\frac{10}{}$
(e) $\frac{}{5}=\frac{15}{25}$
(f) $\frac{4}{=}=\frac{12}{21}$
(g) $\frac{3}{10}=\frac{}{50}$
(h) $\frac{7}{8}=\frac{14}{}$
(i) $\frac{3}{4}=\frac{30}{}$
(j) $\overline{8}=\frac{55}{88}$
(k) $\frac{2}{9}=10$
(1) $\frac{2}{3}=\frac{}{18}$
(m) $\frac{1}{20}=\frac{5}{-}$
(n) $\frac{5}{6}=\frac{}{18}$
(0) $\frac{3}{8}=\frac{9}{}$
(p) $\frac{7}{12}=\frac{}{36}$

WORKED EXAMPLE \#2:

$\frac{1 \times 4}{2 \times 4}=\frac{4}{8} \quad \frac{1}{2}=\frac{4}{8} \quad \frac{18 \div 6}{30 \div 6}=\frac{3}{5} \quad \frac{18}{30}=\frac{3}{5}$

PRACTICE \#2:

Question 2: Find the missing numbers
(a) $\frac{6}{7}=\frac{42}{}$
(b) $\frac{9}{20}=\frac{63}{}$
(c) $\frac{5}{12}=\frac{35}{}$
(d) $\frac{7}{8}=\frac{}{64}$
(e) $\frac{4}{=}=\frac{32}{72}$
(f) $\frac{3}{4}=\frac{}{52}$
(g) $\frac{7}{25}=140$
(h) $\frac{}{15}=\frac{42}{105}$
(i) $\frac{11}{16}=\underline{88}$
(j) $\frac{2}{9}=\frac{}{108}$
(k) $\frac{13}{25}=\frac{}{375}$
(1) $\frac{9}{-}=\frac{81}{144}$

PRACTICE \#3:

Question 1: Write down 3 different fractions that are equivalent to $\frac{1}{2}$
Question 2: Write down 3 different fractions that are equivalent to $\frac{3}{5}$
Question 3: Write down 3 different fractions that are equivalent to $\frac{7}{12}$
Question 4: Dave and Tom are discussing fractions.
Is either man correct?

Question 5: Use the grid to explain why $\frac{3}{4}$ cannot be written as a fraction with a denominator of 15 .

