Learning
Objective:

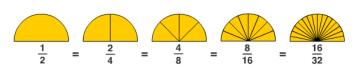
To be able to identify equivalent fractions

Name	
------	--

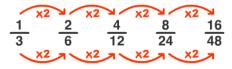
Date:

Do NOW Activity:

- 1 Write down the first 7 prime numbers
- Work out 112.4 + 15.93
- Work out -3 + -7
- Work out 42 × 76
- Work out 1.2 × 0.9


PRIOR KNOWLEDGE CHECK:

1. I am able to find the HCF and LCM of two numbers


THE MAIN EVENT

WORKED EXAMPLE #1:

ou can make equivalent fractions by multiplying or dividing

PRACTICE #1:

Question 1: Find the missing numbers

(a)
$$\frac{2}{3} = \frac{1}{6}$$

(b)
$$\frac{1}{5} = \frac{1}{20}$$

$$\frac{(c)}{4} = \frac{3}{12}$$

(b)
$$\frac{1}{5} = \frac{1}{20}$$
 (c) $\frac{3}{4} = \frac{1}{12}$ (d) $\frac{5}{7} = \frac{10}{12}$

(e)
$$\frac{15}{5} = \frac{15}{25}$$

(f)
$$\frac{4}{21} = \frac{12}{21}$$

$$\frac{\text{(g)}}{10} = \frac{3}{50}$$

(e)
$$\frac{1}{5} = \frac{15}{25}$$
 (f) $\frac{4}{5} = \frac{12}{21}$ (g) $\frac{3}{10} = \frac{1}{50}$ (h) $\frac{7}{8} = \frac{14}{50}$

(i)
$$\frac{3}{4} = \frac{30}{1}$$

(j)
$$\frac{}{8} = \frac{55}{88}$$

$$\frac{(k)}{a} = \frac{10}{a}$$

(i)
$$\frac{3}{4} = \frac{30}{4}$$
 (j) $\frac{3}{8} = \frac{55}{88}$ (k) $\frac{2}{9} = \frac{10}{4}$ (l) $\frac{2}{3} = \frac{18}{18}$

$$\frac{\text{(m)}}{20} = \frac{5}{20}$$

$$\frac{\text{(n)}}{6} = \frac{5}{18}$$

$$\frac{3}{9} = \frac{9}{9}$$

$$\frac{1}{20} = \frac{5}{10}$$
 (n) $\frac{5}{6} = \frac{1}{18}$ (o) $\frac{3}{8} = \frac{9}{10}$ (p) $\frac{7}{12} = \frac{3}{36}$

WORKED EXAMPLE #2:

$$\frac{1 \times 4}{2 \times 4} = \frac{4}{8} = \frac{1}{2} = \frac{4}{8}$$

$$\frac{1}{2} = \frac{4}{8}$$

$$\frac{18 \div 6}{30 \div 6} = \frac{3}{5} \qquad \frac{18}{30} = \frac{3}{5}$$

$$\frac{18}{30} = \frac{3}{5}$$

PRACTICE #2:

Question 2: Find the missing numbers

(a)
$$\frac{6}{7} = \frac{42}{7}$$

(b)
$$\frac{9}{20} = \frac{63}{20}$$

$$\frac{6}{7} = \frac{42}{7}$$
 (b) $\frac{9}{20} = \frac{63}{7}$ (c) $\frac{5}{12} = \frac{35}{7}$ (d) $\frac{7}{8} = \frac{64}{64}$

$$\frac{(d)}{8} = \frac{7}{64}$$

(e)
$$\frac{4}{72} = \frac{32}{72}$$

(f)
$$\frac{3}{4} = \frac{3}{52}$$

$$\frac{(g)}{25} = \frac{140}{25}$$

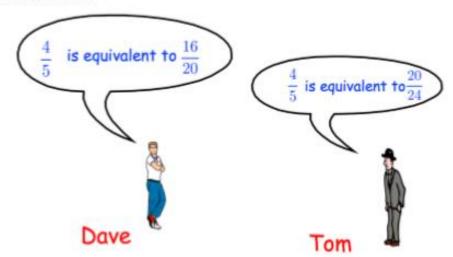
(e)
$$\frac{4}{7} = \frac{32}{72}$$
 (f) $\frac{3}{4} = \frac{3}{52}$ (g) $\frac{7}{25} = \frac{140}{72}$ (h) $\frac{7}{15} = \frac{42}{105}$

$$\frac{(i)}{16} = \frac{88}{16}$$

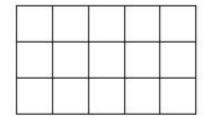
$$\frac{(j)}{9} = \frac{2}{108}$$

$$\frac{(k)}{25} = \frac{13}{375}$$

$$\frac{11}{16} = \frac{88}{100}$$
 (j) $\frac{2}{9} = \frac{100}{100}$ (k) $\frac{13}{25} = \frac{100}{375}$ (l) $\frac{9}{100} = \frac{81}{144}$


PRACTICE #3:

Question 1: Write down 3 different fractions that are equivalent to $\frac{1}{2}$


Question 2: Write down 3 different fractions that are equivalent to $\frac{3}{5}$

Question 3: Write down 3 different fractions that are equivalent to $\frac{i}{12}$

Question 4: Dave and Tom are discussing fractions. Is either man correct?

Question 5: Use the grid to explain why $\frac{3}{4}$ cannot be written as a fraction with a denominator of 15.

