Learning

 Objective:To: Solve worded problems Using Pythagoras \square

Do NOW Activity:

1 Work out $\frac{5}{6} \div \frac{2}{3}$
2 Work out 8.8^{2}
3 Evaluate 3^{0}
4 Expand $x(5-x)$
5 Express the speed 72 km per hour as m per second

PRIOR KNOWLEDGE CHECK:

1. I can find the Longest and shorter sides using Pythagoras
2. I can draw a triangular diagram explaining an event

THE MAIN EVENT

WORKED EXAMPLE \#1:

A flying squirrel lives in a nest that is 8 metres high in a tree. To reach a fallen acorn that is 15 metres from the base of the tree, how far will the flying squirrel have to glide?
\square metres
In a right triangle, $a^{2}+b^{2}=c^{2}$, where a and b are the lengths of the legs and c is the length of the hypotenuse. This is called Pythagoras' theorem.

solution

Draw a diagram.

Use Pythagoras' theorem, with $a=8$ and $b=15$.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagoras' theorem } \\
8^{2}+15^{2} & =c^{2} & & \text { Plug in } \mathrm{a}=8 \text { and } \mathrm{b}=15 \\
64+225 & =c^{2} & & \text { Square } \\
289 & =c^{2} & & \text { Add } \\
\sqrt{289} & =\sqrt{c^{2}} & & \text { Take the square root of both sides } \\
17 & =c & & \text { Simplify }
\end{aligned}
$$

The squirrel will have to fly 17 metres.

PRACTICE \#1:

$A B C$ is an isosceles triangle.
(a) Find h.
(b) Find the area of the triangle.

Shown is an equilateral triangle.
Find the area of the equilateral triangle.

PRACTICE \#2:

Stanley has drawn a right angle triangle.
One side is 14 cm and another is 18 cm .
There are two possible lengths for the third side.
What are they?
$A B C$ and $B C D$ are right angle triangles.
Find the length of $A B$

A wooden flagpole is 25 foot tall.
In a storm, the flagpole is broken and its top
touches the ground 5 foot from the base.
Find the lengths of the segments of the flagpole.

PRACTICE \#3:

Benjamin has completed this question.
Can you spot any mistakes?

Chantelle has completed this question.
Can you spot any mistakes?
5 cm
a

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
5^{2}+x^{2} & =13^{2} \\
10+x^{2} & =26 \\
x^{2} & =16 \\
x & =4 \mathrm{~cm}
\end{aligned}
$$

